北京漪林顺康科技发展有限公司

咨询电话: 010-58773397

TMS

Magstim TMS

脉冲参数可控经颅磁刺激(cTMS)

TMS技术革命性突破:脉冲波形可自由控制

    脉冲方向可调

    脉冲宽度可调

    超高频率可调

FeatucTMSBodyWithScreen500pxWideres of cTMS

  • First new TMS design in years
  • Variable pulse shapes
  • Integrated EMG
  • Integrated output recording
  • Multiple general purpose triggers (4 in, 4 out),  switch in, TTL out
  • External control via network
  • Optional current reversal module
    (~1 msec switching time)

Pulse Waveform Capabilities

  • Directionality Control: Controls amplitude of the -ve phase relative to the +ve phase
  • Variable pulse widths up to 385 μSec
    (with optional high inductance coil)
  • Monophasic, Biphasic, polyphasic, Staircase, Asymmetric
  • Repetition rates up to 1 kHz
  • Unidirectional theta burst
  • Charging power:
    2X 1500 Joules per second

Thoughtful Coil Designs

  • Removable handles to suit every preference
  • Different inductances to extend cTMS pulse range
  • B-Field 3D mapped for use in E-field modelling research
  • Integrated coil tracker mount
  • More models to come (cooled coil, 50mm fig-8 etc.)

 

 

CoilsForBrochure-768x717

 

cTMS Detailed Specifications

Pulse type
(positive PW, negative PW)
M-Ratio10 Hz25 Hz50 Hz100 Hz200 Hz400 Hz800 Hz1 kHzMaximum
Output
Maximum Freq. (Hz)
at Max Output
Unidirectional
Biphasic Train
45µs,145µs .2 100 100 49 24 11 N/A N/A N/A 100 24
60µs, 185µs .22 100 82 40 19 9 N/A N/A N/A 100 20
75µs, 22µs .25 93 55 27 13 6 N/A N/A N/A 93 15
Unidirectional
Biphasic Train
(balanced pulse)
11µs, 54µs .76 100 100 100 100 100 100 65 49 100 550
20µs, 78µs .139 100 100 100 100 91 43 19 14 100 184
30µs, 105µs .162 100 100 100 91 44 20 N/A N/A 100 91
40µs, 131µs .182 100 100 100 54 26 12 N/A N/A 100 55
50µs, 158µs .198 100 100 70 34 16 N/A N/A N/A 100 35
60µs, 185µs .2165 100 97 47 23 10 N/A N/A N/A 100 24
70µs, 212µs .2365 97 66 32 16 7 N/A N/A N/A 24 17
80µs, 238µs .2599 78 57 28 13 6 N/A N/A N/A 85 18
86µs, 255µs .2756 78 47 23 11 N/A N/A N/A N/A 78 15
Bi-directional Positive
60µs, 100µs
1 43 43 43 26 13 5 N/A N/A 43 63
Negative
60µs, 100µs
1 43 43 43 21 10 4 N/A N/A 43 50

cTMS Primer

One of the strengths of cTMS is its ability to generate new types of TMS pulses. This additional flexibility requires that the traditional  TMS nomenclature be augmented to be able to describe these new pulses. While cTMS offers new flexibility, it is not infinite flexibility, so a good understanding of the strengths and weaknesses will help you to take me most advantage of the device. This page will describe the typical parameters that describe the pulse and which ones are controllable and which ones are dependant on the first ones.

cTMS devices have been described in the scientific literature for several years. The design is based on the novel work by Dr. Angel Peterchev at Duke University (the first work was done while at Columbia University). Much of the nomenclature is introduced in his work and several relevant references are given at the bottom of this page.

Before describing cTMS, a quick review of traditional TMS is a good place to start. Generally, TMS comes in two varieties: monophonic and bi-phasic (and some hybrid models that combine the two). Both types of TMS start with a capacitor (and charging circuitry to charge the capacitor) and a switch (to switch the capacitor connection from the charger to the coil to discharge the capacitor into the coil). In monophasic TMS, the capacitor sends is energy into the coil. Once discharged, the current in the coil is at its maximum. The laws of electromagnetism dictate that the rate of change of the coil current will generate the magnetic field. The return path for all that energy in the coil is fed through a diode and resistor, so some returns to the capacitor and the rest is dissipated through the resistor as heat. The pulse shape is fixed, and is a function of the capacitor, coil inductance and the resistor used to dissipate the energy. The advantages are a simple system with relatively few components and from a neurophysiological standpoint, a clean pulse in that there is a single rise and decay in the electric field produced by the pulse. The disadvantage is one of efficiency. It takes a long time (in TMS terms) to recharge the capacitor from the discharged state for a new pulse. For this reason, monophonic pulses are not suitable for most rTMS applications.

Biphasic TMS is a product of the desire to perform repetitive TMS. Instead of dumping the energy to the resistor, a more complex switch circuit recycles most of the energy in the coil back into the original capacitor. This occurs in a much shorter time than discharging through the resistor, and the capacitor needs a lot less new energy to fully recharge for the next pulse since it recycled a lot of the previous pulse. This allows for very rapid and sustained trains of pulses. The drawback is that the resulting waveform is not as straightforward as monophasic pulses.

TMS_Waveforms

cTMS overcomes these challenges by using a completely different approach. Our cTMS uses 2 capacitors and a sophisticated switching system to juggle the energy between the two capacitors (which is a lot faster than dumping energy through a resistor). In cTMS, we define two voltages, one for each capacitor and switch from one to the other (and back again) as need be with one capacitor handling the +ve phase and the other the -ve phase. This gives us a distinct new capability. While cTMS must obey the same laws of electromagnetism as traditional cTMS, we can be more creative in how we do this. For example, we can set the voltage to whatever we wish for either capacitor and define

cTMS_pulses-01 how long we connect that capacitor to the coil to control the width of a portion of the pulse. For example, by setting a low -ve voltage in one capacitor, a high +ve voltage in the other and going from one to the other and back again, we can generate a unidirectional (think monophasic) pulse.

cTMS introduces a new parameter called an M-ratio. This is a directionality control and describes the relative amplitudes of each phase of the pulse. It is the the ratio of the electric field amplitude of the -ve phase divided by the electric field amplitude of the +ve phase.

A balanced pulse is a pulse where the end voltages of the capacitors are at or slightly below the original voltages. Balanced pulses are desirable for repetitive cTMS as the time required to discharge a capacitor (that may have received a lot of residual energy) is long compared to the typical gap between pulses. This constraint can often be circumvented using a bit of creativity in defining pulses. For example, a bi-phasic pulse with an M-ration close to 1 is generally easier to balance. In cTMS, you can make the -ve phase at the start and end be shallow and long (rather than essentially equal to the +ve phase), so while it is technically a bi-phasic pulse, the effective electric field (from the neuron’s perspective) will feel very monophasic.

Selected publications featuring cTMS

Brain Stimul. 2016 Jan-Feb;9(1):39-47. doi: 10.1016/j.brs.2015.08.013. Epub 2015 Sep 1.
Enhancement of Neuromodulation with Novel Pulse Shapes Generated by Controllable Pulse Parameter Transcranial Magnetic Stimulation.
Goetz SM1, Luber B2, Lisanby SH2, Murphy DL1, Kozyrkov IC1, Grill WM3, Peterchev AV4.

Clin Neurophysiol, 127(1), 675-83 (2015)
Effect of coil orientation on strength-duration time constant and I-wave activation with controllable pulse parameter transcranial magnetic stimulation. 
D’Ostilio K, Goetz SM, Hannah R, Ciocca M, Chieffo R, Chen JC, Peterchev AV, Rothwell JC

Clin Neurophysiol. 2016 Jan;127(1):675-83. doi: 10.1016/j.clinph.2015.05.017. Epub 2015 May 30.
Effect of coil orientation on strength-duration time constant and I-wave activation with controllable pulse parameter transcranial magnetic stimulation.
D’Ostilio K1, Goetz SM2, Hannah R3, Ciocca M4, Chieffo R5, Chen JC6, Peterchev AV7, Rothwell JC3.

J Neural Eng. 2014 Oct;11(5):056023. doi: 10.1088/1741-2560/11/5/056023. Epub 2014 Sep 22.
Controllable pulse parameter transcranial magnetic stimulator with enhanced circuit topology and pulse shaping.
Peterchev AV1, DʼOstilio K, Rothwell JC, Murphy DL.

Clin Neurophysiol. 2013 Jul;124(7):1364-72. doi: 10.1016/j.clinph.2013.01.011. Epub 2013 Feb 20.
Pulse width dependence of motor threshold and input-output curve characterized with controllable pulse parameter transcranial magnetic stimulation.
Peterchev AV1, Goetz SM, Westin GG, Luber B, Lisanby SH.

J Neural Eng. 2011 Jun;8(3):036016. doi: 10.1088/1741-2560/8/3/036016. Epub 2011 May 4.
Repetitive transcranial magnetic stimulator with controllable pulse parameters.
Peterchev AV1, Murphy DL, Lisanby SH.

Conf Proc IEEE Eng Med Biol Soc. 2010;2010:2922-6. doi: 10.1109/IEMBS.2010.5626287.
Repetitive transcranial magnetic stimulator with controllable pulse parameters (cTMS).
Peterchev AV1, Murphy DL, Lisanby SH.

IEEE Trans Biomed Eng. 2008 Jan;55(1):257-66. doi: 10.1109/TBME.2007.900540.
A transcranial magnetic stimulator inducing near-rectangular pulses with controllable pulse width (cTMS).
Peterchev AV1, Jalinous R, Lisanby SH.

JOURNAL OF NEURAL ENGINEERING, 11 (5), doi:10.1088/1741-2560/11/5/056023
Controllable pulse parameter transcranial magnetic stimulator with enhanced circuit topology and pulse shaping.
Peterchev, A.V., D’Ostilio, K., Rothwell, J.C., Murphy, D.L. (2014).

Abstracts in conferences:

Hannah R, D’Ostilio K, Goetz S, Ciocca M, Chieffo R, Chen J-CA, Peterchev AV, Rothwell JC (2015)
Effects of transcranial magnetic stimulation coil orientation and pulse width on short-latency afferent inhibition. 
Brain Stim 8, 379-380

Hannah R, Ciocca M, Sommer M, Hammond P, Rothwell J (2014)
Continuous theta burst stimulation with monophasic pulses: effect of current direction. 
Clin Neurophysiol 125, S1–S339

Sommer M, Ciocca M, Hannah R, Hammond P, Neef N, Paulus W, Rothwell JC (2014)
Intermittent theta burst stimulation inhibits human motor cortex when applied with mostly monophasic (anterior-posterior) pulses. 
Clin Neurophysiol 125, S1–S339

核磁兼容线圈

Magstim公司提供功能核磁兼容特制线圈,兼容1.5T,3T核磁。

核磁兼容线圈

                                    核磁兼容线圈示意图

经颅磁刺激

        英国Magstim公司是经颅磁刺激技术的发明者和引导者,是该领域最主要的产品厂商,提供最先进最安全的TMS系统。Magstim几乎已经成为经颅磁刺激技术的代名词。 目前Magstim公司产品占据国际国内市场的绝大多数份额,国际上的相关重要文献也几乎全部是用Magstim公司产品作出。在中国,几乎100%的科研机构和绝大多数配备经颅磁刺激产品的三甲级医院及专科医院都采用的是Magstim公司的产品。

        用户包括:北京大学、清华大学、中科院生物物理所、中科院心理所、中科院先进技术研究院、北京师范大学等顶尖科研机构以及协和医院、宣武医院、北医六院、安定医院、北大医院、中国医学科学院、中国中医医学科学院在内的顶级医院。

TMS知识:

  经颅磁刺激(Transcranial Magnetic StimulationTMS)是Barker 等于1985年首先创立的一种皮层刺激方法具有无痛、无损伤、操作简便、安全可靠等优点很快得到临床应用。Barker研究小组于1985年成立了英国 Magstim公司生产出世界首台经颅磁刺激器。经颅磁刺激器因其无痛、非创伤的物理特性,实现人类一直以来的梦想—虚拟地损毁大脑探索脑功能及高级认知功能。随着计算机技术的发展,具有连续可调重复刺激的经颅磁刺激(rTMS)出现,并在临床精神病、神经疾病及康复领域获得越来越多的认可.
  目前利用TMS技术进行诊断领域的应用有:运动诱发电位(MEP)、中枢运动传导时间(CMCT)、运动阈值(MT)、成对刺激和皮之间的抑制和易化(ICI/ICF)、中枢静息期(SP)等等。
  应用了治疗领域的有:主要是神经科、精神科和康复理疗科等。在脊髓损伤、帕金森病(PD)、癫痫、缺血性卒中、精神分裂症(阴性症状)、抑郁症、强迫症、躁狂症、创伤后应激障碍(PTSD)、颅外上后康复、卒中后康复、外周神经康复等有不错的效果。是无创伤治疗和康复领域的少有的设备。
  目前的科研课题有:TMS与情绪、疲劳、麻醉药物、认知研究、躯体感觉皮层、毒品、性成瘾等。
  2008年10月,有史以来第一次,美国FDA认证通过了经颅磁刺激用于治疗药物抵抗型抑郁症,有效率大约20%

经颅磁刺激---刺激线圈(Coils)

刺激线圈 Magstim有一系列的线圈可供使用,给临床和科研提供了极大的灵活性。

  • 各型圆形线圈、双线圈和伪线圈,可用于特殊的定向刺激和研究。
  • 创新的Air Film风冷线圈,现在可以实现长时间连续刺激。
  • fMRI下同步刺激线圈,可将TMS与fMRI和EEG的研究结合在一起。
  • 可以根据客户的设计和要求提供非标准的定制线圈,允许对配置和几何形状的修改。

90mm高能线圈                           

                                   90mm高能线圈

                                       锥型线圈

                         

                                   核磁兼容线圈

  

                                    NIRS兼容线圈

TMS专用神经影像导航定位系统(Briansight)

Brainsight™2神经影像导航定位系统结合MRI、fMRI等影像技术,直观地引导刺激线圈置位,让您的磁刺激过程可视化。

  • 精确引导、定位刺激靶点、角度、深度。
  • 全程记录刺激过程、刺激参量。
  • 保存并输出多种数据,为您的研究提供量化的指标。
  • 支持EEG数据同步采集与呈现(选配TMS兼容EEG系统)
  • 支持NIRS数据同步采集与分析(选配Brainsight NIRS系统)